Plant genetics is the study of heredity in plants, specifically the mechanisms of hereditary transmission and the variation of inherited traits. Plant genetics differs from animal genetics in several ways: somatic mutations can contribute to the germ line more easily since flowers emerge at the end of somatic cell-based branches; polyploidy is more common; and plants also have chloroplast DNA.
Genome size, gene content, the extent of repetitive sequences, and polyploidy/duplication events are the best ways to define plant genomes. It strives to sequence, characterise, and investigate a full plant genome's genetic compositions, structures, organisations, functions, and interactions/networks. Plants have mitochondrial and chloroplast genomes as well, but their nuclear genome is the largest and most complicated. Plant Genomics is Critical for Food Security, Human Health, and Environmental Sustainability
Title : Techniques for Identification and managing bacterial and fungal diseases of tomatoes
Mohammad Babadoost, University of Illinois, United States
Title : The importance of plant biology research in supporting phytosanitary capacities and applications
Shaza Roushdy Omar, Cairo University, Egypt
Title : Key innovations of prognostic breeding that increase the efficiency of crop genetic improvement
Vasilia A Fasoula, Adjunct Research Scientist and Consultant, United States
Title : Phytochemical diversity of the flora of the Western Ghats- An investigation through hyphenated mass spectrometric techniques
Rameshkumar K B, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, India
Title : Fungal endophytes promote wheat growth (PBW-343) and enhance salt tolerance through improvement of ascorbate glutathione cycle and gene expression
Priyanka Prajapati, Banaras Hindu University, India
Title : Abc1kN is involved in glucosinolate metabolism and stress response during seed development in Arabidopsis thaliana
Giovanni DalCorso, University of Verona, Italy